A Note on Semidensities in Antisymplectic Geometry

نویسنده

  • K. Bering
چکیده

We revisit Khudaverdian’s geometric construction of an odd nilpotent operator ∆E that sends semidensities to semidensities on an antisymplectic manifold. We find a local formula for the ∆E operator in arbitrary coordinates and we discuss its connection to Batalin-Vilkovisky quantization. MCS number(s): 53A55; 58A50; 58C50; 81T70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 5 . 34 40 v 3 [ he p - th ] 2 5 A pr 2 00 8 Semidensities , Second - Class Constraints and Conversion in Anti - Poisson Geometry

We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator ∆ E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semi-densities to semidensities. We find a local formula for the ∆ E operator in arbitrary coordinates. As an imp...

متن کامل

ar X iv : 0 70 5 . 34 40 v 1 [ he p - th ] 2 3 M ay 2 00 7 Semidensities , Second - Class Constraints and Conversion in Anti - Poisson Geometry

We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator ∆ E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semi-densities to semidensities. We find a local formula for the ∆ E operator in arbitrary coordinates. As an imp...

متن کامل

Se p 20 07 Semidensities , Second - Class Constraints and Conversion in Anti - Poisson Geometry

We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator ∆ E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semi-densities to semidensities. We find a local formula for the ∆ E operator in arbitrary coordinates. As an imp...

متن کامل

Laplacians in Odd Symplectic Geometry

We consider odd Laplace operators arising in odd symplectic geometry. Approach based on semidensities (densities of weight 1/2) is developed. The role of semidensities in the Batalin–Vilkovisky formalism is explained. In particular, we study the relations between semidensities on an odd symplectic supermanifold and differential forms on a purely even Lagrangian submanifold. We establish a crite...

متن کامل

Gauge Symmetries of the Master Action

We study the geometry of the Lagrangian Batalin–Vilkovisky theory on an antisymplectic manifold. We show that gauge symmetries of the BV-theory are essentially the symmetries of an even symplectic structure on the stationary surface of the master action.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006